Effluent Disposal Alternatives Evaluation Los Olivos Community Services District

12/14/2022

Conceptual evaluation of disposal alternatives for Los Olivos Wastewater Reclamation Program Project (LOWRPP)

Disposal Alternatives

- Percolation Ponds
- Percolation Chambers
- Shallow Aquifer Injection Wells
- Alamo Pintado Creek Outfall
- Recycled Water¹

Evaluation Criteria

- Permitting Requirements
- Effluent Quality
- Social Considerations
- Footprint
- Water Resource Benefits
- Feasibility/Complexity/Reliability
- Monitoring Requirements
- Capital Costs
- Operations and Maintenance Costs

¹Not included in the scoring and ranking, but recommended as a complement to primary disposal method

Percolation Ponds

Lower permitting, effluent quantity and monitoring requirements

Lower capital and operations & maintenance costs

Moderate footprint requirement

Higher social considerations (e.g. aesthetics, odor potential)

Moderate water resource benefits

Limited complexity

Percolation Chambers

Lower permitting, effluent quantity and monitoring requirements

Lower capital and operations & maintenance costs

Highest footprint requirement

Low social considerations (e.g. aesthetics, odor potential)

Moderate water resource benefits

Moderate complexity

Broderson Disposal Site (Los Osos)

Shallow Aquifer Injection Wells

High permitting, effluent quantity and monitoring requirements

High capital and operations & maintenance costs¹

Low footprint requirement

Low social considerations (e.g. aesthetics, odor potential)

Higher water resource benefits

High level of complexity

¹Advanced Treatment requirements and reverse osmosis concentrate disposal significantly increase costs associated with this alternative

Alamo Pintado Creek Outfall

Higher permitting, effluent quantity and monitoring requirements

Higher capital and operations & maintenance costs

Lower footprint requirement

Lower social considerations (e.g. aesthetics, odor potential)

Moderate water resource benefits

Moderate complexity

Recycled Water

- Partial Disposal via Recycled Water
 - Significant advantages due to potential to reduce salt monitoring and mitigation requirements
 - District evaluating recycled water opportunities in Recycled Water Master Plan
- Full Disposal via Recycled Water
 - Challenging because system reliant upon irrigation demand
 - Requires users to take water regardless of need for water

Effluent Disposal Ranking

Disposal Alternative	Effluent Disposal Alternative	Permitting Requirements	Effluent Quality	Social Considerations	Footprint	Water Resource Benefits	Feasibility/ Complexity/ Reliability	Monitoring Requirements	Capital Cost	Operations & Maintenance Cost	Total Score	Ranking
Percolation ponds	An open, graded impoundment that is designed to dispose of treated effluent via percolation	5	5	2	2	3	4	4	5	4	34	1
Percolation chambers	Buried impoundments, either above or below ground surface that is designed to dispose of treated effluent via percolation	5	5	4	1	3	3	4	4	4	33	2
Shallow aquifer injection wells	Shallow aquifer injection wells (<100-150 feet deep) that inject treated effluent into the saturated portion of the upper aquifer	1	1	5	5	4	1	1	1	1	20	4
Alamo Pintado Creek outfall	Discharge outlet to Alamo Pintado Creek for disposal of treated effluent	2	2	3	4	3	2	2	3	2	23	3

Recommendations

- Percolation ponds or chambers, combined with recycled water, are the recommended disposal alternative
 - Perform percolation study at potential LOWRPP sites
 - Consult with a manufacturer and RWQCB regarding wastewater application rates
- Evaluation potential climate change impacts on LOWRPP